Globally convergent Jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization

نویسندگان

  • Jianze Li
  • Konstantin Usevich
  • Pierre Comon
چکیده

In this paper, we consider a family of Jacobi-type algorithms for simultaneous orthogonal diagonalization problem of symmetric tensors. For the Jacobi-based algorithm of [SIAM J. Matrix Anal. Appl., 2(34):651–672, 2013], we prove its global convergence for simultaneous orthogonal diagonalization of symmetric matrices and 3rd-order tensors. We also propose a new Jacobi-based algorithm in the general setting and prove its global convergence for sufficiently smooth functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-orthogonal tensor diagonalization

Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...

متن کامل

Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization

A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...

متن کامل

Independent component analysis and (simultaneous) third-order tensor diagonalization

Comon’s well-known scheme for independent component analysis (ICA) is based on the maximal diagonalization, in a least-squares sense, of a higher-order cumulant tensor. In a previous papr, we proved that for fourth-order cumulants, the computation of an elementary Jacobi rotation is equivalent to the computation of the best rank-1 approximation of a fourth-order tensor. In this paper, we show t...

متن کامل

A numerical method for computing signature symmetric balanced realizations

A new numerical scheme for computing balancing coordinate transformations for signature symmetric realizations in linear systems theory is presented. The method is closely related to the Jacobi method for diagonalizing symmetric matrices. Here the minimization of the sum of traces of the Gramians by orthogonal and hyperbolic Jacobi-type rotations is considered. The algorithm is shown to be glob...

متن کامل

Simultaneous Source Localization and Polarization Estimation via Non-Orthogonal Joint Diagonalization with Vector-Sensors

Joint estimation of direction-of-arrival (DOA) and polarization with electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, which propose to tackle the high dimensional optimization problem in CNJD via a sequence of simple sub-optimization problems, by using LU or LQ decomposition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.03750  شماره 

صفحات  -

تاریخ انتشار 2017